🦭 Dane Są Punkty A 4 0
Dane są punkty A = – 3, 0 i B = 2, 5. Dokończ zdanie, wybierając poprawne odpowiedzi. Przekształcając odcinek A B w symetrii względem osi X , otrzymamy Możliwe odpowiedzi: 1. odcinek, który ma jeden punkt wspólny z osią Y , 2. odcinek, którego jednym z końców jest punkt – 2 , 5 , 3. odcinek, którego jeden z końców leży na osi XRównanie prostej AB: \(\displaystyle{ y=\frac{1}{2}(x-1)}\) \(\displaystyle{ y=\frac{1}{2}x-\frac{1}{2}}\) Wszystkie proste równoległe do prostej AB opisuje równanie: \(\displaystyle{ y=\frac{1}{2}x+c ,c\in \Re}\) Szukamy takiej prostej, która przechodzi przez punkt P; podstawiając do równania współrzędne P, otrzymujemy \(\displaystyle{ c=2}\). Odległość dowolnego punktu \(\displaystyle{ (x,y)}\) od punktu A wyraża się wzorem \(\displaystyle{ \sqrt{(x-1)^{2}+y^{2}}}\) Odległość dowolnego punktu \(\displaystyle{ (x,y)}\) od punktu B wyraża się wzorem \(\displaystyle{ \sqrt{(x-5)^{2}+(y-2)^{2}}}\) Współrzędne punktu równoodległego od A i B spełniają zatem równanie: \(\displaystyle{ \sqrt{(x-5)^{2}+(y-2)^{2}}=\sqrt{(x-1)^{2}+y^{2}}}\) \(\displaystyle{ (x-5)^{2}+(y-2)^{2}=(x-1)^{2}+y^{2}}\) \(\displaystyle{ 24-8x=4y-4}\) \(\displaystyle{ 6-2x=y-1}\) Szukanym punktem jest punkt, którego współrzędne spełniają układ równań: \(\displaystyle{ \begin{cases} 6-2x=y-1 \\ y=\frac{1}{2}x+2 \end{cases}}\) odp. \(\displaystyle{ \left(2,3\right)}\) Sprawdź jeszcze 4 lutego 2009, 17:18 --Zeby sprawdzić, czy trójkąt ABC jest prostokątny, możesz np. obliczyć kwadraty długości jego boków: \(\displaystyle{ |AB|^{2}=32}\) \(\displaystyle{ |BC|^{2}=10}\) \(\displaystyle{ |AC|^{2}=10}\) Skoro \(\displaystyle{ |AB|^{2} \neq |BC|^{2}+|AC|^{2}}\), to trójkąt ABC nie jest prostokątny.
Znajdź odpowiedź na Twoje pytanie o Dane są punkty: A(2, -5), B(-4, 7). Wyznacz współrzędne punktu P należącego do odcinka AB, wiedząc, że: a) IPBI/IABI=1/… karolcia590 karolcia590Gdy dane są punkty \(A = (x_A, y_A)\) i \(B = (x_B, y_B)\), to równanie prostej przechodzącej przez te dwa punkty wyraża się wzorem: \[(y-y_A)(x_B-x_A)-(y_B-y_A)(x-x_A)=0\] lub zapisane w postaci kierunkowej: \[y=\frac{y_A-y_B}{x_A-x_B}x+\left (y_A-\frac{y_A-y_B}{x_A-x_B}\cdot x_A\right )\] Równanie prostej przechodzącej przez dwa punkty można również wyznaczyć rozwiązując układ równań. Metoda wyznaczania równania prostej przechodzącej przez dwa punkty z układu równań Załóżmy, że chcemy wyznaczyć równanie prostej przechodzącej przez punkty \(A=(5,6)\) oraz \(B=(7,11)\). Zapisujemy równanie prostej w postaci kierunkowej: \[y=ax+b\] Podstawiamy do tego równania współrzędne punktu \(A\): \[6=a\cdot 5+b\] oraz punktu \(B\): \[11=a\cdot 7+b\] W ten sposób otrzymujemy dwa równania z dwiema niewiadomymi \(a\) oraz \(b\): \begin{cases} 6=5a+b \\ 11=7a+b \end{cases} Rozwiązujemy powyższy układ równań, np. odejmując równania stronami: \[\begin{split} 6-11&=5a-7a\\[6pt] -5&=-2a\\[6pt] a&=\frac{5}{2} \end{split}\] Zatem np. z pierwszego równania: \[b=6-5a=6-5\cdot \frac{5}{2}=\frac{12}{2}-\frac{25}{2}=-\frac{13}{2}\] Czyli ostatecznie szukane równanie prostej jest postaci: \[y=\frac{5}{2}x-\frac{13}{2}\] Punkty i proste w przestrzeni. W poniższych przykładach będziemy ilustrowali płaszczyznę w przestrzeni, prezentując jej wybraną część, istotną dla prezentowanych rozważań. Zazwyczaj będzie to prostokąt wycięty z tej płaszczyzny. Na rysunku przedstawiona jest płaszczyzna p 1 i leżące w niej dwa punkty A i B. Przykład 1. Przejdź do zawartości Ile dni do matury?KontaktMoje kontoKoszyk Kursy WideoKursy E-bookKorepetycjeFiszkiNotatki i ZadaniaO NasBlog Geometria analitycznaPiotr Tomkowski2021-09-18T15:16:21+02:00 Zadania maturalne z Matematyki Tematyka: geometria analityczna. Zadania pochodzą z oficjalnych arkuszy maturalnych CKE, które służyły przeprowadzaniu majowych egzaminów. Czteroznakowy kod zapisany przy każdym zadaniu wskazuje na jego pochodzenie: S/N – „stara”/”nowa” formuła; P/R – poziom podstawowy/rozszerzony; np. 08 – rok 2008. Zbiór zadań maturalnych w formie arkuszy, możesz pobrać >> TUTAJ <<. Zadanie 1. (NP15) Dane są punkty M=(−2,1) i N=(−1,3). Punkt K jest środkiem odcinka MN. Obrazem punktu K w symetrii względem początku układu współrzędnych jest punkt: Zadanie 2. (NP15) W układzie współrzędnych dane są punkty A=(−43,−12), B=(50,19). Prosta AB przecina oś Ox w punkcie P. Oblicz pierwszą współrzędną punktu P. Zadanie 3. (NP16) W układzie współrzędnych dane są punkty A=(a,6) oraz B=(7,b). Środkiem odcinka AB jest punkt M=(3,4). Wynika stąd, że: Zadanie 4. (NP17) Dany jest okrąg o środku S=(2,3) i promieniu r=5. Który z podanych punktów leży na tym okręgu? Zadanie 5. (NP17) Dane są punkty A=(−4,0) i M=(2,9) oraz prosta k o równaniu y=−2x+10. Wierzchołek B trójkąta ABC to punkt przecięcia prostej k z osią Ox układu współrzędnych, a wierzchołek C jest punktem przecięcia prostej k z prostą AM. Oblicz pole trójkąta ABC. Zadanie 6. (NP18) Punkt K=(2,2) jest wierzchołkiem trójkąta równoramiennego KLM, w którym |KM|=|LM|. Odcinek MN jest wysokością trójkąta i N=(4,3). Zatem: Zadanie 7. (NP18) W układzie współrzędnych punkty A=(4,3) i B=(10,5) są wierzchołkami trójkąta ABC. Wierzchołek C leży na prostej o równaniu y=2x+3. Oblicz współrzędne punktu C, dla którego kąt ABC jest prosty. Zadanie 8. (SP15) Dane są punkty M=(3,−5) oraz N=(−1,7). Prosta przechodząca przez te punkty ma równanie: Zadanie 9. (SP15) Dane są punkty P=(−2,−2), Q=(3,3). Odległość punktu P od punktu Q jest równa: Zadanie 10. (SP15) Punkt K=(−4,4) jest końcem odcinka KL, punkt L leży na osi Ox, a środek S tego odcinka leży na osi Oy. Wynika stąd, że: Zadanie 11. (SP15) Okrąg przedstawiony na rysunku ma środek w punkcie O=(3,1) i przechodzi przez punkty S=(0,4) i T=(0,−2). Okrąg ten jest opisany przez równanie: Zadanie 12. (SP14) Liczba punktów wspólnych okręgu o równaniu (x+2)2+(y−3)2=4 z osiami układu współrzędnych jest równa: Zadanie 13. (SP13) Punkty A=(−1,2) i B=(5,−2) są dwoma sąsiednimi wierzchołkami rombu ABCD. Obwód tego rombu jest równy: Zadanie 14. (SP13) Punkt S=(−4,7) jest środkiem odcinka PQ, gdzie Q=(17,12). Zatem punkt P ma współrzędne: Zadanie 15. (SP13) Odległość między środkami okręgów o równaniach (x+1)2+(y−2)2=9 oraz x2+y2=10 jest równa: Zadanie 16. (SP12)| Punkt A ma współrzędne (5,2012). Punkt B jest symetryczny do punktu A względem osi Ox, a punkt C jest symetryczny do punktu B względem osi Oy . Punkt C ma współrzędne: Zadanie 17. (SP12)| Na okręgu o równaniu (x−2)2+(y+7)2=4 leży punkt: Zadanie 18. (SP12) Wyznacz równanie symetralnej odcinka o końcach A=(−2,2) i B=(2,10). Zadanie 19. (SP11) Prosta k ma równanie y=2x−3. Wskaż równanie prostej l równoległej do prostej k i przechodzącej przez punkt D o współrzędnych (−2,1). Zadanie 20. (SP11) Styczną do okręgu (x−1)2+y2−4=0 jest prosta równaniu: Zadanie 21. (SP11) Okrąg o środku w punkcie S=(3,7) jest styczny do prostej o równaniu y=2x−3. Oblicz współrzędne punktu styczności. Zadanie 22. (SP10) Wskaż równanie okręgu o promieniu 6. Zadanie 23. (SP10) Punkty A=(−5,2) i B=(3,−2) są wierzchołkami trójkąta równobocznego ABC. Obwód tego trójkąta jest równy: Zadanie 24. (SP09) Punkty B = (0,10) i O = (0,0) są wierzchołkami trójkąta prostokątnego OAB, w którym |∡OAB |=. Przyprostokątna OA zawiera się w prostej o równaniu y = x . Oblicz współrzędne punktu A i długość przyprostokątnej OA. Zadanie 25. (SP08) Na poniższym rysunku przedstawiono łamaną ABCD , która jest wykresem funkcji y = f(x). Korzystając z tego wykresu: a) Zapisz w postaci przedziału zbiór wartości funkcji f, b) Podaj wartość funkcji f dla argumentu x = 1− , c) Wyznacz równanie prostej BC, d) Oblicz długość odcinka BC. Zadanie 26. (SP07) Dany jest punkt C = (2,3) i prosta o równaniu y = 2x− 8 będąca symetralną odcinka BC . Wyznacz współrzędne punktu B . Wykonaj obliczenia uzasadniające odpowiedź. Strona wykorzystuje pliki cookies, by działać prawidłowo oraz do celów analitycznych, reklamowych i społecznościowych. OK, Rozumiem Privacy Overview This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are as essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience. Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information. Dane są punkty M=(−2,1) i N=(−1,3). Punkt K jest środkiem odcinka MN. Obrazem punktu K w symetrii względem początku układu współrzędnych jest punkt
Opublikowane w przez Dane są punkty A=(−4,0) i M=(2,9) oraz prosta k o równaniu y=−2x+10. Wierzchołek B trójkąta ABC to punkt przecięcia prostej k z osią Ox układu współrzędnych, a wierzchołek C jest punktem przecięcia prostej k z prostą AM. Oblicz pole trójkąta dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura maj 2017 zadanie 33 Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia, że wylosujemy liczbę, która jest równocześnie mniejsza od 40 i podzielna przez 3. Wynik podaj w postaci ułamka zwykłego wpis Matura maj 2017 zadanie 31 W ciągu arytmetycznym (an), określonym dla n≥1, dane są: wyraz a1=8 i suma trzech początkowych wyrazów tego ciągu S3=33. Oblicz różnicę: a16−a13.
Proste są równoległe wtedy gdy ich współczynniki kierunkowe są takie same. Znając współrzędne punktów przez które przechodzi prosta jesteśmy w stanie obliczyć jej współczynnik kierunkowy. Jest to różnica współrzędnych na osi y podzielona przez różnicę współrzędnych na osi x. Współczynnik kierunkowy prostej AB:Opłata paliwowa to podatek wprowadzony w celu finansowania budowy dróg. Obok przedstawiono analizę składników ceny za litr oleju napędowego. Przyjmując, że cena za litr oleju napędowego wynosi 4,51 zł, oblicz: a) ile wyniesie opłata paliwowa, jeśli tankujemy 50 litrów b) ile wynosi marża stacji benzynowej przy sprzedaży jednego litra oleju napędowego c) jaką część ceny za litr oleju napędowego stanowią podatki. Ile wynosi łączna kwota podatków? 4,4% - marża stacji paliw 26% - podatek akcyzowy ? - opłata paliwowa 18,75%- podatek VAT 48,89%- koszt przetworzenia ropy naftowej 4,51zł/l Answer
Znajdź odpowiedź na Twoje pytanie o 1. Dane są punkty A=(-2,2) i B=(4,-2). Ile jest równy współczynnik kierunkowy prostej AB?
autor: aluszacedro 12.4.2010 (15:22) Dane są punkty: A(2, -5), B(-2, 1) i C(3, -1). Znajdź współrzędne punktu D Przedmiot: Matematyka / Liceum: 2 rozwiązania: autor: lukaszunkile 18.4.2010 (16:17) dane są zbiory A= {2x-4
otoniczności, f) argumenty, dla których funkcja przyjmuje wartości dodatnie, g) argumenty, dla których funkcja przyjmuje wartości ujemne, h) argumenty, dla których funkcja przyjmuje wartość -2. -5 4 Zad.2 Narysuj wykres funkcji f(x) = -4x+2 oraz podaj jej: a) punkty wspólne z osiami układu współrzędnych prostokątnych (wykonaj
W układzie współrzędnych dane są punkty: A = ( - 3, 2), B = (5, 2) i C = (0, - 4), które są wierzchołkami trójkąta. Oblicz pole tego trójkąta Zobacz odpowiedźW przypadku C powstałby kwadrat, jednakże, punkty o współrzędnych (2,1) i (2,-3) nie byłby sąsiadującymi wierzchołkami, tylko naprzeciwległymi. (wierzchłokami przekątnej kwadratu). Jedynie, gdy punkty były by sąsiadujące, to wówczas, gdybyśmy zakładali, że powstają tam dwa takie same trójkąty.
Kliknij tutaj, 👆 aby dostać odpowiedź na pytanie ️ Dane są punkty A(-6,-3) i B (4,1). Wyznacz współrzędne punktu C leżącego na osi Y tak, aby pole trójkąta AB… Taka112233 Taka112233 SzxfEr.